(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(after(X1, X2)) → after(active(X1), X2)
active(after(X1, X2)) → after(X1, active(X2))
from(mark(X)) → mark(from(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
after(mark(X1), X2) → mark(after(X1, X2))
after(X1, mark(X2)) → mark(after(X1, X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(after(X1, X2)) → after(proper(X1), proper(X2))
proper(0) → ok(0)
from(ok(X)) → ok(from(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
after(ok(X1), ok(X2)) → ok(after(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(from(X)) → mark(cons(X, from(s(X))))
active(after(0, XS)) → mark(XS)
active(after(s(N), cons(X, XS))) → mark(after(N, XS))
active(from(X)) → from(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(after(X1, X2)) → after(active(X1), X2)
active(after(X1, X2)) → after(X1, active(X2))
proper(from(X)) → from(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(after(X1, X2)) → after(proper(X1), proper(X2))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

top(ok(X)) → top(active(X))
after(X1, mark(X2)) → mark(after(X1, X2))
from(ok(X)) → ok(from(X))
after(ok(X1), ok(X2)) → ok(after(X1, X2))
from(mark(X)) → mark(from(X))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
proper(0) → ok(0)
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))
after(mark(X1), X2) → mark(after(X1, X2))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6]
transitions:
ok0(0) → 0
active0(0) → 0
mark0(0) → 0
00() → 0
top0(0) → 1
after0(0, 0) → 2
from0(0) → 3
s0(0) → 4
cons0(0, 0) → 5
proper0(0) → 6
active1(0) → 7
top1(7) → 1
after1(0, 0) → 8
mark1(8) → 2
from1(0) → 9
ok1(9) → 3
after1(0, 0) → 10
ok1(10) → 2
from1(0) → 11
mark1(11) → 3
s1(0) → 12
ok1(12) → 4
s1(0) → 13
mark1(13) → 4
cons1(0, 0) → 14
ok1(14) → 5
01() → 15
ok1(15) → 6
cons1(0, 0) → 16
mark1(16) → 5
proper1(0) → 17
top1(17) → 1
mark1(8) → 8
mark1(8) → 10
ok1(9) → 9
ok1(9) → 11
ok1(10) → 8
ok1(10) → 10
mark1(11) → 9
mark1(11) → 11
ok1(12) → 12
ok1(12) → 13
mark1(13) → 12
mark1(13) → 13
ok1(14) → 14
ok1(14) → 16
ok1(15) → 17
mark1(16) → 14
mark1(16) → 16
active2(15) → 18
top2(18) → 1

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
after(z0, mark(z1)) → mark(after(z0, z1))
after(ok(z0), ok(z1)) → ok(after(z0, z1))
after(mark(z0), z1) → mark(after(z0, z1))
from(ok(z0)) → ok(from(z0))
from(mark(z0)) → mark(from(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
PROPER(0) → c11
S tuples:

TOP(ok(z0)) → c(TOP(active(z0)))
TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
PROPER(0) → c11
K tuples:none
Defined Rule Symbols:

top, after, from, s, cons, proper

Defined Pair Symbols:

TOP, AFTER, FROM, S, CONS, PROPER

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

PROPER(0) → c11
TOP(ok(z0)) → c(TOP(active(z0)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
after(z0, mark(z1)) → mark(after(z0, z1))
after(ok(z0), ok(z1)) → ok(after(z0, z1))
after(mark(z0), z1) → mark(after(z0, z1))
from(ok(z0)) → ok(from(z0))
from(mark(z0)) → mark(from(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
S tuples:

TOP(mark(z0)) → c1(TOP(proper(z0)), PROPER(z0))
AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
K tuples:none
Defined Rule Symbols:

top, after, from, s, cons, proper

Defined Pair Symbols:

TOP, AFTER, FROM, S, CONS

Compound Symbols:

c1, c2, c3, c4, c5, c6, c7, c8, c9, c10

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
after(z0, mark(z1)) → mark(after(z0, z1))
after(ok(z0), ok(z1)) → ok(after(z0, z1))
after(mark(z0), z1) → mark(after(z0, z1))
from(ok(z0)) → ok(from(z0))
from(mark(z0)) → mark(from(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

top, after, from, s, cons, proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
after(z0, mark(z1)) → mark(after(z0, z1))
after(ok(z0), ok(z1)) → ok(after(z0, z1))
after(mark(z0), z1) → mark(after(z0, z1))
from(ok(z0)) → ok(from(z0))
from(mark(z0)) → mark(from(z0))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AFTER(x1, x2)) = x1   
POL(CONS(x1, x2)) = [2]x1·x2   
POL(FROM(x1)) = [2]x1   
POL(S(x1)) = [2]x1 + x12   
POL(TOP(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = [1]   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:

AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CONS(mark(z0), z1) → c10(CONS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AFTER(x1, x2)) = 0   
POL(CONS(x1, x2)) = x1 + [2]x2   
POL(FROM(x1)) = x1   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
K tuples:

AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c1(TOP(proper(z0)))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AFTER(x1, x2)) = 0   
POL(CONS(x1, x2)) = 0   
POL(FROM(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1]   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
K tuples:

AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(AFTER(x1, x2)) = x2   
POL(CONS(x1, x2)) = 0   
POL(FROM(x1)) = 0   
POL(S(x1)) = 0   
POL(TOP(x1)) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
S tuples:none
K tuples:

AFTER(ok(z0), ok(z1)) → c3(AFTER(z0, z1))
AFTER(mark(z0), z1) → c4(AFTER(z0, z1))
FROM(ok(z0)) → c5(FROM(z0))
FROM(mark(z0)) → c6(FROM(z0))
S(ok(z0)) → c7(S(z0))
S(mark(z0)) → c8(S(z0))
CONS(ok(z0), ok(z1)) → c9(CONS(z0, z1))
CONS(mark(z0), z1) → c10(CONS(z0, z1))
TOP(mark(z0)) → c1(TOP(proper(z0)))
AFTER(z0, mark(z1)) → c2(AFTER(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

AFTER, FROM, S, CONS, TOP

Compound Symbols:

c2, c3, c4, c5, c6, c7, c8, c9, c10, c1

(21) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(22) BOUNDS(1, 1)